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The partial ordered structure which plays for unsharp quantum mechanics the 
same role of orthomodular lattices for oi'dinary quantum mechanics is intro- 
duced. Differently from the unsharp case, in which one can identify quantum 
propositions (i.e., Hilbert space subspaees) with yes-no devices (i.e., orthogonal 
projections) they are tested by, in the unsharp ease this identification is broken 
down: every quantum generalized proposition (i.e., pair of mutually orthogonal 
subspaces) is tested by many different yes-no devices (i.e., Hilbert space effects). 
The set of all quantum effects has a structure of Brouwer-Zadeh poser, canon- 
ically embeddable in a (minimal) Brouwer-Zadeh lattice, whereas the set of all 
quantum generalized propositions has a structure of Brouwer-Zadeh complete 
lattice. 

A Brouwer-Zadeh poset is defined as a partially ordered structure equipped 
with two nonusual orthocomplementations: a regular degenerate (Zadeh or 
fuzzy-like) one and a weak (Brouwer or intuitionistic-like) one linked by an 
interconnection rule. Using these two orthocomplementations it is possible to 
introduce the two modal-like operators of necessity and possibility. 

1. B R O U W E R - Z A D E H  O R  F U Z Z Y - I N T U I T I O N I S T I C  P O S E T S  

W e  i n t r o d u c e  the  de f in i t ion  o f  BZ-pose t  a n d  the  m a i n  p roper t i e s  o f  this  

s t ruc tu re  [we refer to C a t t a n e o  a n d  M a r i n o  (1988) a n d  C a t t a n e o  a n d  Nis t i c6  

(1989) for  a m o r e  comple t e  d i scuss ion  o n  this  subject] .  

Defini t ion 1.1. A B r o u w e r - Z a d e h  ( B Z ) - p o s e t  (resp. ,  lat t ice) is a 
s t ruc tu re  

<x, o, _<, ', ~> 
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defined as follows. 
(a) E is a nonempty set containing at least the element 0. 
(b) < is a partial order relation on E with respect to which Z is a poset 

(resp., lattice) lower bounded by 0 (hence 0 is the least element 
o f~) .  

(c) The mapping ': Z ~ E is a regular degenerate (or quasi-) orthocom- 
plementation, i.e., the following hold. 

(doc-l) 
(doc-2) 

(re) 

For every acE, a=a" 
Let a, beE; then a<b implies b'<a' 
Let a, beE; then a<a' and b'<b imply a<b 

(d) The mapping ~: E ~ E is a weak (or pseudo-) orthocomplementa- 
tion, i.e., the following hold. 

(woc-1) 
(woc-2) 
(woc-3) 

For every ae~;,, a<_a-- 
Let a, b e Z; then a < b implies b~ < a~ 
For every acE, a^a -=O 

(e) The two orthocomplementations are linked by the following inter- 
connection rule. 

(in) For every aeE, a~'=a ~~ 

A BZ-poset (resp., lattice) is said to have the half element iff the further 
following condition is satisfied. 

(ha) An element (1/2)eY, exists such that (1/2)= (1/2)' 

Furthermore, we put 1 :=0 '=0 ~, so that for every aeY,, a <  1 (hence 1 
is the greatest element of Z). Trivially, racE,  a-<a'. 

The mapping' is also called the Zadeh or fuzzy orthocomplementation, 
while the mapping - is the Brouwer or intuitionistic orthocomplementation. 
Hence a BZ-poset (resp., lattice) is also called a fuzzy-intuitionistic poset 
(resp., lattice). 

If (E, 0, <, ', - )  is a BZ-lattice, one can consider the algebraic structure 
(E, 0, n ,  v ,  ', - )  (where A and v are the usual two lattice binary operations 
of meet and join, respectively). This algebraic structure is called BZ orfuzzy- 
intuitionistic algebra. By abuse of language, we will often denote briefly by E 
either the BZ-poset or the BZ-algebra above. Anyway, as shown by (Giuntini, 
1990) it is possible to embed any BZ poset in a BZ complete lattice, preserv- 
ing "inf" and "sup" operations, with a standard Mac Neille completion. 
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I.I .  Some Remarks on Fuzzy Orthoeomplementation 

The O-kernel and the 1-kernel of  the fuzzy orthocomplementation ' are 
respectively the sets 

N6:={a~Z:a<a '} and N~:={b~E:b'<b} 

The elements of  N6 are called contingent or of type II, and the elements of 
N] possible or of type I. Of course, 0~N6 and I~N~. Moreover, if aAa' 
exists, then a A a'~N6 and if b v b' exists, then b v b'~N]. Furthermore, 
a~N6 iff a'~Nl. Finally, the central kernel o f '  is defined as the set 

N" := N6 c~ NI = {a tE:  a=a'} 

whose elements are said to be the central elements. 
In a degenerate orthocomplemented poset the following conditions are 

equivalent: 

(doc-3a) N6= {0} 
(doc-3b) N[={1}  
(doc-3c) For every a~E, a A a ' = 0  
(doc-3d) For every a~E, a v a '=  1 

If  one, and therefore all, of the aforesaid conditions holds, the fuzzy ortho- 
complementation ' is said to be standard and the bounded poset E is called 
orthocomplemented tout court. Condition (doc-3c) expresses the contradic- 
tion law, whereas condition (doc-3d) is the excluded-middle law of the 
orthocomplementation. 

As customary, from any orthocomplementation (also if nonusual) it is 
possible to define an orthogonality relation 3_ on Z as follows. Let a, beY.; 

(og) a•  iff a<b' 

Relation 3_ satisfies the following conditions. Let a, b, c~E; then the follow- 
ing hold. 

(og-1) a 
(og-2) 0 
(og-3) a 
(og-4) a 
(og-5) a' 

The fuzzy 
laws: 

(dM-ld) 

_l_b iff b_L a 
/ a  

< b and b _1_ c imply a • c 
_L {c: c• implies a<b 
•  and a ' = v  { b : b •  

orthocomplementation satisfies both the generalized de Morgan 

Let a, beE;  if avb  exists in E; then a' Ab' exists in Z, too, and 
a'Ab'=(avb)'  
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(dM-2d) Let a, beE; if a ^ b exists in Y~, then a' v b' exists in E, too, and 
a ' v b ' = ( a ^ b ) '  

More precisely, it is possible to prove that if a mapping on a poset satisfies 
condition (doc-1), then statements (doc-2), (dM-ld), and (dM-2d) are 
equivalent. On the contrary, the intuitionistic orthocomplementation gen- 
erally satisfies only the first generalized de Morgan law. 

(dM-lw) Let a, beY.; if a v b exists in E, then a~A b ~ exists in Y., too, and 
a ~ A b ~ = ( a v b )  ~ 

Furthermore, i re  is a BZdattice, condition (re) is equivalent to the following 
Kleene condition. 

(KL) For every a, beE, a A a ' < b v b '  

If g is BZ-poset with half element, then (1 /2)eN' ;  moreover, conditions 
(ha) and (re) can be equivalent replaced by the following statements: 

(ha-I) N '={(1 /2 )}  is a singleton 
(re-I) a<(1 /2 )  for every aeN'o and (1 /2)<b  for every beN~ 

1.2. Exact (Sharp) and Fuzzy (Unsharp) Elements of a BZ-Poset 

Let (E, 0, _<, ', ~) be a BZ-poset. We introduce the set 

Ee:= { f e e  : f = f - ~ }  

of all the elements of E which are closed with respect to the Brouwerian 
orthocomplementation. The elements of Ee are called exact (or sharp), and 
the elements of Y\Ee fuzzy (or unsharp). 

Theorem I. 1. In any BZ-poset E the elements 0, 1 eye. Moreover, the 
following statements hold. 

(i) For everyfeEe, f ' = f ~ e Z e .  
(ii) Let us still denote by < the restriction to Ee of the partial order 

relation defined on E; then, the mapping 

feY~ e --+ f '  =f~  e~.a e 

is a standard orthocomplementation in (s 0, <) ,  which we still 
denote by ', so that (Y~e, 0, <, ') is a (standard) orthocomple- 
mented bounded poset. 

(iii) If E is a lattice, then Y, is a sublattice of Y~, whose lattice l.u.b, and 
g.l.b., denoted by ve and Ae, respectively, are just the l.u.b, and 
the g.l.b, in E, i.e., for any f, g e Z e , f V e g = f v  g a n d f A e g = f A  g. 

(iv) For every acE, a-' and a '-  are exact elements of E. 
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2. NECESSITY AND POSSIBILITY 

Resting on (iv) in Theorem 1.1, two further unary operators can be 
introduced in every BZ-poset: 

v: aeZ~-~ v(a):=a'-~Ze (necessity) 

It: a~E~---~ p(a):=a~'~Ee (possibility) 

The following are some elementary properties of  the operators v, 12. For 
every acE,  

v(a') = 12(a)', 12 (a ' )=  v(a)', v(a~) =12(a) ~ 

Moreover, v and 12 act on the exact elements of  Y~e as identity operators, 
i.e., for everyfe]Ee, v ( f ) = p ( f ) = f [ h e n c e  Ze = v(E) =12(Y-)]. 

Definition 2.1. A BZ-poset Z is said to be a quantum (resp., classical) 
BZ-poset iff the following conditions are satisfied: 

(Q1) The orthocomplemented poset of  all exact elements ~'2 e is an ortho- 
modular (resp., Boolean) lattice. 

(Q2) For any family of  elements {aj} ~E,  there exists an element rcajeE 
such that 

v(Ttaj) = Aj v(aj) and 12(Jraj) = Aj It(as) 

Theorem 2.1. The necessity operator v: E ~ Ee satisfies the following. 

(in-l) v(1) = 1 (normalized) 
(in-2) v(a) <a (decreasing) 
(in-3) a < b implies v(a) < v(b) (monotone) 
(in-4) vv(a)  = v(a) (idempotent) 

(uq) v (v (a ) ' )=v (a ) '  (interconnection) 
(ne-1) v(a) A v(a)'=O (contradiction) 
(ne-2) v(a) v v(a)' = 1 (excluded-middle) 

Furthermore, the following also holds. 

(n-l) aA v (a ' )=0  

Conditions (in-1)-(in-4) define v as an interior operator; because of condi- 
tion (uq), this interior operator is a universal quantifier. Conditions (ne-1) 
and (ne-2) express the modalprinciples of contradiction and excluded middle 
for the necessity operator, respectively. 

Then, the following theorem can be stated. 

Theorem 2.2. Let (E, 0, <, ', v )  be any regular degenerate orthocom- 
plemented poset endowed with a necessity operator v, i.e., a mapping on 
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which satisfies (in-1)-(in-3), (uq), and (n-l) in Theorem 2.1. Then, the 
mapping 

~" a~X~--,a~:=v(a')~X 

is a weak orthocomplementation, the structure <X, 0, < ,  ', ~> is a BZ-poset, 
and the necessity operator induced by ~ coincides with v. 

Because of Theorem 2.2, the structure (X, 0, < ,  '~ v),  with a necessity 
operator on E, is also called a BZ-poset. 

In an analogous way as for necessity, we have the following result. 

Theorem 2.3. The possibility operator p : X ~ Xe satisfies the following. 

(cl- 1) /t (0) = 0 (normalized) 
(cl-2) a < p (a) (increasing) 
(cl-3) a<_b implies p(a)<_p(b) (monotone) 
(cl-4) p p (a) = p (a) (idempotent) 

(eq) p (p (a)') = p (a)' (interconnection) 
(po-1) p (a) A p (a)' = 0 (contradiction) 
(po-2) p (a) v p (a)' = 1 (excluded-middle) 

Furthermore, the following also holds. 

(p-l) a ^ p ( a ) ' = 0  

Conditions (c1-1)-(cl-4) define/.t as a closure operator. Because of condition 
(eq), this closure operator is an existential quantifier. Conditions (po-l)  and 
(po-2) express the modal principles of  contradiction and excluded-middle 
for the possibility operator. 

Then, the following theorem can be stated. 

Theorem 2.4. Let (X, 0, < ,  ', p )  be any regular degenerate orthocom- 
plemented poset endowed with a possibility operator p,  i.e., a mapping on 
Z which satisfies (c1-1)-(cl-3), (eq), and (p-l) in Theorem 2.3. Then, the 
mapping 

~" a~Y~---~a-:=p(a)'~Z 

is a weak orthocomplementation, the structure (E, 0, < ,  ', ~) is a BZ-poset, 
and the possibility operator induced by ~ coincides with p. 

Because of Theorem 2.4, the structure (X, 0, < ,  ', p ) ,  with p a possibil- 
ity operator on Z, is also called a BZ-poset. 
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2.1. The Weak Anti-intuitionistic Orthocomplementation 

The mapping 

~. aeX~._.~a~:=a,~,eEe 

is a weak anti-orthocomplementation, or anti-pseudo-orthocomplementation, 
i.e., it satisfies the following conditions. 

(aoc-1) For every aeE,  a ~ < a  
(aoc-2) Let a, beE;  then a<_b implies b~<_a ~ 
(aoc-3) For every acE, a v a~= l 

The connection between ~, ~, ' is established as follows: 

for every aeE,  a~<a'<a ~ 

Finally, for every aeE,  the following equalities hold: 

a ~= v(a)'= v(a) ~= v(a) ~ (nonnecessity) 

a-  =/ l (a) '  = p (a)~ =/z (a)~ (impossibility) 

3. BZ P R O P E R T I E S  A N D  N O P E R T I E S  

We denote by = the equivalence relation on E defined as follows. Let 
a, beE;  then 

a = b iff v(a) = v(b) 

Whenever a = b we say that a and b are equivalent with respect to necessity. 
We call property, written pr(a), the equivalence class with respect to = gener- 
ated by aeE;  the collection of all such properties is denoted by pr(E). 

The element v(a) belongs to pr(a), it is the unique exact element of 
pr(a), and for all other bepr(a) we have that v(a)<b. For these reasons 
v(a) is called the exact representative ofpr(a); all the other elements in the 
same property are said to be fuzzy representatives of it. 

We can identify the property pr(a) with its exact representative v(a), 
according to 

pr(a) ~ v(a) (3.1) 

The set pr(X) of all the properties is an orthocomplemented bounded poset, 
with respect to the order relation, 

(or-pr) For every a, beE, pr(a) <pr(b) iff v(a)< v(b) 
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and the standard orthocomplementation 

(oc-pr) For every aeZ,  pr(a)'=pr(v(a)')  

In conclusion, we schematically summarize all this in the following way: 

Y, 
u~ (3.2) 

v( a) e Y,e =pr(If, ) 9 pr( a) 

We denote by -=-o the equivalence relation on I~ defined as follows. Let 
a, beE;  then 

a - 0  b iff /z (a) = p (b) 

Whenever a ~o b we say that a and b are equivalent with respect to possibility. 
We denote by pro(a) the equivalence class with respect to =o generated by 
acE. Furthermore, the unique exact element/~(a) which belongs to pro(a) 
is called the exact representative of this class; all the other elements in pro(a) 
are its fuzzy  representatives. 

Now, let us observe that we can make the following identifications 

pro(a) ~ It(a) (3.3) 

pro(a) ~ Iz(a)' (3.4) 

Therefore, the equivalence class pro(a) can be identified either with/~ (a) or 
with # (a)' (which both are exact elements), thus obtaining two semantically 
different interpretations of  the same class. 

Whenever the equivalence class pro(a) is represented by the unique 
exact element a -= / l ( a ) ' ,  i.e., the impossibility of a, we refer to it as to 
a noperty. 

Each of the above identifications induces an order and a standard orthocom- 
plementation on pro(Y,) in a way similar to the one we have discussed in the 
case of  properties. 

Remark 1. It must be noted t h a t f i s  an exact representative of a prop- 
erty i f f f '  is an exact representative of a noperty and vice versa. 

4. TI~REE-VALUED BZ-POSETS INDUCED FROM BZ-POSETS 
BY MODALITY 

From any BZ-poset it is possible to construct a new BZ-poset, according 
to a procedure expounded in the present section. 

Definition 4.1. Let (E, 0, _<, ', - )  be a BZ-poset. Then, we put 

ext: aEY, ~ ext(a):= (v(a), v(a'))e~e x ~e 
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The mapping ext is called the extension mapping; it associates to any element 
a c e  the corresponding extension (v(a), v(a')). The necessity v(a) and the 
impossibility v(a') =/1 (a)' are said to be the certainly-true and certainly-false 
element of ext(a), respectively. 

Trivially, for everyf~Y~e, ex t ( f )  = ( f , f ' ) .  Furthermore, we put L3(E) = 
ext(E) = {(v(a), v(a')):aeZ} and we state the following theorem. 

Theorem 4.1. The structure (L3(E), 101, ~ , - ,  ~>,  where 101:=(0, 1), is 
a BZ-poset with respect to the following. 

(I)  

(or-L) 

(2) 

(doe-L) 

The partial ordering: 

(v(a), v(a'))~_(v(b), v(b')) iff v(a)<v(b) and v(b')<v(a'). 

The (regular) degenerate orthocomplementation: 

-(v(a),  v(a')):= (v(a'), v((a')')) = (a~, v(a)). 

(3) The weak orthocomplementation: 

(woc-L) ,,~(v(a), v(a')):= (v(a-), v((a~)')) = (a-, I1 (a)). 

This BZ-poset will be called the three-valued BZ, or Lukasiewicz, poset 
induced from Z by modality. 

The following proposition collects some elementary properties of the 
Lukasiewicz poset defined above. 

Proposition 4.1. 

(i) The Lukasiewicz BZ-poset L3(Z) is bounded by the least element 
101 = (0, 1) and the greatest element Ill = (1, 0). 

(ii) Whenever Y~ has the half element (1/2), then the element 

1(1/2)1 := (v(1 /2) ,  v((1/2) ' ) )  = (0, o) 

is the half element of L3(E). 
(iii) The kernels of the degenerate orthocomplementation - are 

No={(v(a), v(a')): v(a)=0}, N;={(v(b),  v(b'))" v(b')=0} 

(iv) The exact elements in L3(Z) are generated by the exact elements 
in Ee ; more precisely, 

L3(~e) = {(f,f '):fEb'e} ~ -  ext(Z,e) 
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(v) The necessity and possibility operators of the BZ-poset L3(E), 
which we now denote by [] and (}, respectively, are defined by 
the following equalities. 

Iq(v(a), v(a'))= (v(a), v(a)') (necessity-L) 

0 (v(a), v(a')) = (it (a), It (a)') (possibility-L) 

The elements from LifE)\L3(E)e are called modal iper fuzzy or m-iper 
fuzzy, for short; the elements from L3(Y~)e are called m-iper exact. 

Notice that from Proposition 4.1(iv) the restriction of the extension 
mapping to ~e is one-to-one and onto LifE)e, allowing the identification 
between m-iper exact elements from Z3(I~)e and exact elements from Ze 
according to 

( f , f ' )  ,--, f (4.1) 

Schematically, we represent all this in the following diagram: 

L3(E) 
UI (4.2) 

( f , f ' ) ~ L 3 ( E ) e - E e g f  

The property from pr(LffE))  generated by (v(a), v(a')) is 

pr(v(a), v(a'))= {(v(b), v(b')) : v(a)= v(b)} 

From Proposition 4.1(v) and (4.1) it follows that the identification (3.1) 
between properties and exact elements representing properties can be 
extended in the following way: 

(3.1) (4,1) 

pr(v(a), v(a')) ' ' (v(a), v(a)') ' , v(a) (4.3) 

Analogously, we get 
(3.4) (4.1) 

pro(v(a),v(a')) ' ' (It(a)',It(a)) ~ It(a)' (4.4) 

With the above identifications, the certainly-true element v(a) and the 
certainly-false element v(a')=It(a)' of ext(a)= (v(a), v(a')) are the exact 
representatives of the property and of the noperty generated by ext(a), 
respectively. 

If in (4.3) and (4.4) we take once more into account identifications (3.1) 
and (3.4), we can further identify the corresponding property sets according 
to 

(4,3) (3,1) 

pr(v(a), v(a')) '  ' v(a) ' ' pr(a) (4.5) 
(4.4) f3.4) 

pro(v(a), v(a')) '  ' It(a)'*-----*pro(a) (4.6) 
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~In conclusion, we sum up the identifications up to now in the scheme 

e x t  

Y~ , L3(Y~ ) 
Ul UI (4.7) 

pr(Y~)=-~e ~ Z3(Y~)e=pr(Z3(~)) 

which can be made explicit in the following way: 

�9 

a ' (v(a), v(a')) 

pr(a) ' ' v ( a ) '  ' (v(a), v(a)') ~---~ pr(v(a), v(a')) 

(4.8) 

where [see conditions (in-4) and (uq) of Theorem 2.1 ] the extension mapping 

ext( a) = ( v( a), v( a)') = ( v(v(a)), v( v( a)') ) ~ L3(E ) 

in general is not one-to-one. The L3(Y~) three-valued BZ poset induced from 
a BZ-poset E by modality, in general, is not a lattice. The following theorem 
gives a deepening of  the structure of  a quantum BZ-poset. 

Theorem 4.2. Let E be a quantum BZ-poset; then L3(E) is a BZ com- 
plete lattice, where, in particular, the following hold. 

(1-1) (v(a), v(a')) n (v(b), v(b'))=(v(a) ^ v(b), v(a') v v(b')) 
(I-2) (v(a), v(a')) u (v(b), v(b'))=(v(a) v v(b), v(a') ^ v(b')) 

5. G E N E R A L I Z E D  P R O P E R T I E S  

Let E be a BZ-poset. The following is an equivalence relation on E: 

a_~b iff ext(a)=ext(b) 

iff v(a)=v(b) and p ( a ) = p ( b )  

This equivalence relation is called congruence by modality. We will denote 
by [al the congruence class generated by element a ~E. Any such equivalence 
class is called a generalized property and we put prg(E) := ( E / - ) .  

Since for any a t e  

pr(a) = {c~E: v(a)= v(c)}, pro(a) = {deE: p(a)=p(d)} 

we have 

[a[ = {b: v(a) = v(b), p (a) = p (b)} =pr(a) c~pro(a) 
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The congruence relation - is compatible with operations of  orthocom- 
plementation ' and - ;  that is, 

a ~ b  implies a'-~b' and a ~ ~ b  ~ 

and from this result we get the following theorem. 

Theorem 5.1. The set of  all the generalized properties 

(prg(E), 101,---, - ,  ~7  

is a BZ-poset once equipped with the following. 

(1) The partial ordering 

(or-P) lal~lb[ iff v(a)<v(b)andp(a)<p(b) .  

(2) The degenerate orthocomplementation: 

(doc-P) - : prg(E) ~ prg(E), lal ~ -  lal:-- la'l. 

(3) The weak orthocomplementation: 

(woc-P) ,-~: prg(E) ~--~prg(E), lal ~ -  lal := la~l. 

The mapping Ext:prg(E)~-~ L3(E), associating to any generalized prop- 
erty lal its three-valued "extension" 

Ext(lal) := (v(a), v(a')) = (v(a), p(a)') 

is an order isomorphism which preserves the two orthocomplementation 
mappings and which allows the identification 

prg(E ) -  La(E ) (5.1) 

lal '  , (v(a), v(a')) 

Proposition 5.1. Denote by pre(E) the set of  all exact elements of  the 
BZ-poset prg(E); the following statements hold. 

(i) The generalized property lal is exact in prg(E) iff the element a is 
exact in E, i.e., 

[al~pre(E) iff a ~ e  

(ii) pre(E) is the collection of  all the congruence classes of  the type 
Iv(a)[, for a running in E, i.e., 

pre(~) = {Iv(a)l: a ~ Z }  

(iii) For every a~E, [v(a)[ is the singleton 

Iv(a)[ = { v(a)} 
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The elements from pre(E) are called exact properties, whereas the ones from 
prg(E)~pre(E) are called fuzzy properties, in the sequel. 

Proof. ~(~[a[)=[a[ iff [a~-[=[a[ iff v(a--)  = v(a) and p(a-~)=p(a),  
but, since v(a~)=p(a~~) ,  this is true if v(a)=p(a) and from (in-2) and 
(cl-2) we get a = v(a)=p(a). This proves (i) and (ii). Now, bE[v(a)[ iff 
v(v(a)) = v(b) and p(v(a)) =p(b)  ; since v(v(a)) = v(a) and p(v(a)) = v(a), 
we conclude that v(b)=p(b)= v(a), and from (in-2) and (d-2) we conclude 
that b = v(a), which proves (iii). 

Note that as a particular case of (5.1) we have the identification 
(s.I) (uq) 

Iv(a)l '  ' (v(v(a)), v(v(a)')) = (v(a), v(a)') 

According to the above proposition, this identification is schematically repre- 
sented by the diagram 

pre(E ) - L3(E )e 
(5.2) 

Iv(a)l ~ (v(v(a)), v(v(a'))) 

We can now put together these results with (4.7) and (4.8) to get the follow- 
ing diagram: 

ext 

E ' L3(E) -=prg(E) 
Ul UI Ul 

p , - (E) -E~ - L3(X)~-pr~(Z)  

with extended behavior 

where 

ext 

a ' (v(a), v(a ' ) ) '  ' lal 

l o 1 
pr(a) +--* v(a) ~ ' (v(a), v(a)')' ' Iv(a)l 

(5.3) 

(5.4) 

lal = {b~E: v(a) = v(b) and p(a)=p(b)} 

Iv(a)l = {v(a)} and pr(a) = {beE: v(a) = v(b)} �9 

6. T H E  HILBERTIAN B Z - P O S E T  

Let E(J4 ~) denote the set of all bounded self-adjoint operators F defined 
on a complex Hilbert space ~ ,  whose inner product is ( .  [. >, and satisfying 
the condition 

Vcpe~, 0_< (F~Plm> < llmll 2 (6.1) 

The set 8 ( ~ )  of all orthogonal projections is enclosed in this class. Let 
J / ' ( ~ )  denote the set of  all subspaces (i.e., dosed linear manifolds) of ~r 
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then the mapping JC(~Cg ) ~ d~(~), M ~ EM, associating to the subspace M 
of ~ the orthogonal projection EM which projects onto M, is one-to-one 
and onto, allowing the following identification: 

M ~ EM (6.2) 

Theorem 6.1. The set E(oeg) is a BZ-poset <Z(~) ,  O, <,  ', - )  (which 
in general is not a lattice) with respect to the following: 

(1) The partial ordering 

(or-H) F~<F2 iff Yq~EJ:g, <F,q~ltp)< <Fztp[~o >. 

(2) The (regular) degenerate orthocomplementation: 

(doc-H) F ' : = ~ - F .  

(3) The weak orthocomplementation: 

(woc-H) F-:=ERan(F)• = Eker(F). 

We collect now some interesting properties of this BZ-poset. 

Proposition 6.1. The BZ-poset Z(Jg) satisfies the following statements. 
(i) It is bounded by the least operator "O(~p)=0, for all ~pE~Yf" (0 

being the zero vector of ~r and the greatest operator "4 (tp)=~p, 
for all q~zovg;" i.e., 

O_<F<~ 

(ii) The operator "~(~)(q~):= ~tp,~ for all q~+g"' is  such that (~)t ' = 
1 �9 �9 ( ~ ) .  Then this operator is the half element of E(~r 

(iii) The kernels of the degenerate orthocomplementation are 

N~={F~E(gf~):F<_(�89 N~={FEZ(:/t~):( �89 

(iv) The family Ze(oVt ~ of all exact elements in Z(oeg) is the set g ( ~ )  
of all orthogonal projections on ~ .  

(v) The necessity and possibility operators are given by 

v (F)  = F ' -  = (4 - F)  ~ = EKeT<~ -r)  (necessity) 

p (F) = F - '  = EKer (V)  • (possibility) 

from which we have 

p (F)' = F~ = EKer (V)  (impossibility) 

By making use of the usual nomenclature of BZ-poset theory, the ele- 
ments of Z(or are said to be generalized orthogonal projections. The gen- 
eralized orthogonal projections which are not orthogonal projections are 
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called fuzzy projections, whereas the orthogonal projections are also called 
exact projections [see (iv)]. 

To any generalized orthogonal projection FeE(g/ )  it is possible to 
associate two subspaces of Jf~: 

The certainly-yes domain: Mj(F) = { gEgt~: (Fg [~ )  = II ~112}. 
The certainly-no domain: M0(F) = {~eJF: (Fq~ltb)=0 }. 

It is a trivial result of the Hilbert space operator theory that 

M~(F) = Ker(~ - F) and Mo(F) = Ker(F) (6.3) 

Generalized orthogonal projections are Hilbertian representatives of 
(Ludwig's) effects (Ludwig, 1983; Kraus, 1983) produced in yes-no measure- 
ment devices testing questions of Piron's approach to quantum physics 
(Jauch and Piron, 1969; Piron, 1976; also see Cattaneo and Nistic6, 1985; 
Cattaneo et al., 1988, 1989). More precisely: 

(RI-1) Fuzzy projections from E(gt~)\d~(gt ~) are interpreted as fuzzy 
(or unsharp) effects (produced in yes-no measurement devices) 
and orthogonal projections from g(gt ~) as exact (or sharp) 
effects (also events). 

(RI-2) Vectors of Jf~\{0} are interpreted as preparation apparatuses of 
ensembles of noninteracting individual samples of the physical 
system, similarly prepared under well-defined and repeatable 
conditions. 

(RI-3) The quantity, defined for any F~E(gC) and any ~pEg~\{0} 

P(~, F):= t1~~ 

is such that 0<P(~p, F) < 1 ; hence it is interpreted as the prob- 
ability of  occurrence of the answer "yes" for the effect F when 
the system is prepared according to ~0. 

(RI-4) Nonzero vectors of the certainly-yes (resp., no) domain Mj (F) 
[resp., M0(F)] represent preparation apparatuses with respect 
to which the answer yes (resp., no) to the effect F (resp., F') is 
certain, i.e., the probability of occurrence of F (resp., F') is 1. 
When F (resp., F') is certain, we also say that F is true (resp., 
false). 

Owing to Proposition 6.1(v) and (6.3), the necessity v(F) of any gen- 
eralized orthogonal projection F is the orthogonal projection EM,<r) which 
projects onto the certainly-yes domain of F; therefore, two generalized 
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orthogonal projections F~ and F2 are equivalent with respect to necessity iff 
they have the same certainly-yes domain: 

FI==--F2 iff EM,(rl)=EM~(F2) 

iff M1 (Fj) = M1 (F2) 

Any necessity equivalence class, in this quantum context denoted by 

[Fljp= (5 :  F=Fj} = {Fj: M,(F)= M,(Fj)} 

defines a (quantum)property of the physical system; this property is charac- 
terized by the certainly-yes domain MI(F) common to any generalized ortho- 
gonal projections (i.e., Fj) belonging to it [i.e., MI (Fj)= Mj (F)]. The exact 
effect described by the orthogonal projection EM~(r) belongs to the property 
[F]jp, it is the unique orthogonal projection belonging to [F]n,, and 
EM,(e) <Fj for all other Fje[F]jp. In this Hilbertian BZ-poset, the (3.1) has 
now the form 

[F]jp ~ EM~(F) (6.4) 

Owing to this identification, in axiomatic quantum mechanics EM is custom- 
arily assumed to represent the exact effect produced in yes-no measurement 
devices which sharply, i.e., without noise and imprecision, test property 
[F]jp. For this reason people generally identify any quantum property with 
the exact effect which tests it. 

Any generalized orthogonal projection Fie [F]jp represents an effect pro- 
duced in yes-no devices which fuzzily test the same quantum property [F]jp, 
and so we have that a fixed quantum property is tested by several effects, 
breaking in this way the above identification. 

Two generalized orthogonal projections GI and G2 are equivalent with 
respect to impossibility if they have the same certainly-no domain: 

GI -o G2 iff EM0(~o = EM0(~2) 

iff Mo(G,)=Mo(G2) 

Any (quantum) noperty, denoted by [G ]cN, is characterized by a well-defined 
certainly-no domain Mo(G) which is just the certainly-no domain of any 
effect belonging to it. This noperty is exactly represented by the exact effect 
(orthogonal projection) EM0r which projects onto this common certainly- 
no domain. 

Therefore, in Hilbertian BZ-posets Z(oug) identifications (3.1) and (3.4) 
assume now the form 

[F]jv ~ EM,(v) *-* M~(F) (6.5) 

[G]cN ~ - *  EMo(~) ~ Mo(G) (6.6) 
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where any property (resp., noperty) is identified, not only with the unique 
exact effect which tests it, but also with the common certainly-yes (resp., no) 
domain. 

Proposition 6.2. The Hilbertian BZ-poset Y.(~) of all generalized 
orthogonal projections is a quantum BZ-poset. Indeed, we have the 
following. 

(QH-1) The set of all its exact elements is the set o~(J(r ~) of all ortho- 
gonal projections, which has the structure of the orthomodular 
orthocomplemented atomic complete lattice ( r  O, <,  ') 
with respect to the ordering (or-H). In particular, we recall 
that 

El<E2 iff M1(EI)~_MI(E2) 

and that 

E' := ~ - E=  ERa.(E)I 

(QH-2) For any family of generalized orthogonal projections {Ey:jeJ} 
there exists the generalized orthogonal projection 

. I t 

HEy . . =  ff [EM,(j)'1- (EM0(J)) ] 

where 

M,(J) := N M,(Ey) and Mo(J) := N Mo(EY) 
jEJ j~J 

such that 

v(HFj) = A: V(EY-) and # (rlFj) = Aj p(Fj) 

According to the general theory, the Lukasiewicz three-valued BZ-poset 
L3(Y~(~)) induced from E ( ~ )  by modality is a lattice; this lattice consists 
of all ordered pairs 

( v( F), p ( F)') = ( EM,(F) , EMo(r)) (6.7) 

equipped with the following. 

(1) The partial ordering: 

(or-LQ) (v(F), p(F)') ~_ (v(G), It(G)') iff M,(F) ~_gl(G) and 
Mo( G) ~- Mo(F). 
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(2) The regular degenerate orthocomplementation: 

(doc-LQ) - - (  E M d F )  , EMoted) = ( EMo(F) , EM,(F)). 

(3) The weak orthocomplementation: 

(woc-LQ) "(EMt(r), EM0(r)) = (EMo~F), EMo(V?). 

The set La(Z(~f))e of exact elements from L3(Y~(g)) is the collection of all 
ordered pairs, for arbitrary E C g ( ~ ) ,  

(E, ~ - E )  ~ E (6.8) 

The elements of L3(E(~))\La(Z(~ct~ e are called m-iper effects and the ele- 
ments of L3(Y~(,Yta))e m-iper exact effects, these being identified [see (6.8)] 
with orthogonal projections of ovg. 

The extensional mapping is thus the mapping 

ext: Z(gg) ~ L3(]~(~)) 

associating to any effect F e Z ( ~ )  the corresponding extension 

ext( F) := ( EMt(F) , EMo(r)) 

Two effects are congruent by modality iff they have the same extension, 
and in our Hilbertian case this assumes the form 

F~-G iff Mj(F)=M1(G) and Mo(F)=Mo(G) 

and the quantum g-properties are usually denoted by (Cattaneo and Nistic6, 
1985; Cattaneo et al., 1988) 

[F]vR = {Fj: F_-__Fj} = {Fj: MI(F) = M~(Fj) and Mo(F) = M0(Fj)} 

=[F]jp N [F]cN (6.9) 

Note that for any effect F we have that [F]vR ~ [F]jp and so the following 
mapping is well defined: 

~P: [F]vg ~ [F]jp 
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Taking into account the notion of generalized properties (g-properties) 
and the results of Sections 5 and 6, the cumulative diagram (5.4) has now 
the form 

effect iper effect g-property 

FE ~ ---* (EM,(F), EMo(F))' ' [F]vR6prg(av:) 

Eed~(3(f) ' ' (E, ~-E)  ' ' [E]jpepr(W) 
event iper event property 

(6.10) 

where E=EM,(F). Lastly, according to (5.1), one can make the following 
further identification: 

[F]FR = ([F]w, [F]cy) (6.11) 

7. PRECLUSIVITY PROPOSITIONAL HILBERTIAN 
QUANTUM LOGICS 

If we denote by X ( ~ ) : =  ovf\{0} the collection of all nonzero vectors 
representing preparation procedures of a single sample of the physical entity 
described by the Hilbert space ocf, the usual orthogonality relation on vectors 
is a preclusivity (i.e., irreflexive and symmetrical) relation such that 
(X(A:), _1_) turns out to be an orthoframe (Dalla Chiara and Giuntini, 
1989). We recall that this orthogonality relation can be equivalently stated 
as the following binary relation of physical separability: 

~v _1_ (0 iff 3Eso~(3cf), e(~,, E) = 1, and P(~0, E) =0 

The set of all Hilbertian quantum propositions is defined as follows: 

Lf(X(W), _i_) := {(M,, go) :  M,, Mo~M/[ (3r M, _kgo} 

i.e., it is the family of all pairs of mutually orthogonal subspaces of 3r For 
any proposition p =  (Mr(p), Mo(p)), the subspace Ml(p) [resp., M0(p)] is 
the certainly-true (resp., false) domain; any vt ~ Ml (p) / { O } [resp., Mo(p) \ 
{0} ] describes a preparation (semantical world) in which the proposition 
is true (resp., false). Preparations from 3~\(Ml(p)u Mo(p)) represent a 
semantical world of indeterminacy for p. 

The one-to-one mapping 

L3(E(gt:)) ~ Lf(X(~) ,  3_), (EM,(r), EM0(F)) ~ (Mr(F), Mo(F)) 
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allows the identification 

L3(X(ae)) - L: (X(~) ,  • 
(7.1) 

(Eg,~r), Eg0(F)) ~ (M,(F), Mo(F)) 

in such a way that the BZ lattice structure of L3(Z(oeg)) is naturally trans- 
ferred to L: (X(~ ) ,  l ) .  Precisely, we have the BZ lattice of all Hilbertian 
quantum propositions characterized by the following. 

(1) The partial ordering: 

(or -Pn)  (M,(p), Mo(p)) =- (M,(q), Mo(q)) iff Ml(p) ~_M~(q) and 
Mo(q) ~_ Mo(p). 

(2) The regular degenerate orthocomplementation: 

(doc-PH) --1 (M1, Mo) = (Mo, Mi). 

(3) The weak orthocomplementation: 

(woc-PH) ~ ( g l ,  M0) = (M0, g~-). 

The BZ lattice Le(X(~) ,  • of all quantum exact propositions is 

Le(X(or _L):= {(m, M• Me~r 

which allows the identification 

Le(X( dYg~), • = d[g ( #ct a) 
(7.2) 

(M, M • ~ M 

In this way any quantum exact proposition is identified with a subspace of 
the Hilbert space ~r The propositions which are not exact are called quan- 
tum fuzzy propositions. We recall the following results. 

(NP) The necessity and possibility operators, written [] and 0 ,  respec- 
tively, are given by 

D(p) = ~ (-qp) = (ml (p), Mo(p) • (necessity) 

<> (p) =-1 (,~p) = (Mo(p) J-, mo(p)) (possibility) 

(QP1) The g.l.b, and the l.u.b., denoted by I-3 and Ll, respectively, of 
any family of quantum propositions {pj = (m?),  m~oJ)):j~ J} are 
given by 

VI(M?, m~o '~) = (c~ M ? ,  v M~o j)) 

u ( M ? )  , Meg ~) = ( v  M ~  j~ , n MOo :~) 
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where v M (g) := (w M(S~) •177 denotes the subspace generated by 
the set-theoretic union of the subspaces M (j). 

(QP2) For any family - (J9 {p j -  (M, , M(0J~)} of quantum propositions we 
define their "product" as the proposition 

 M(g 

Summarizing, we have the following graph: 

(M, , Mo)eLf(X(~,~ff), I )  
UI 

(M, M • eLe(X(~) ,  _1_) = Jr ( ~ )  ~M 
(7.3) 

and so we can conclude as follows: 

The orthomodular lattice ~/(Jg') of all Hilbertian subspaces is identified 
with the orthomodular "logic" Le(X(J,~), _1_) of all Hilbertian exact 
quantum propositions, the latter being embedded into the "preclusivity 
logic" Lf(X(dg), • of all Hilbertian quantum propositions. 

Owing to identification (7.1), the extensional mapping can be considered 
as a mapping 

ext: Z(,,ug) ~ Ly(X(Jf), _L) 

given by the law 

F e Z ( ~ )  --* ext( F) = ( M1(F), Mo( F) ) 

the latter being a quantum proposition. Hence, there are several effects which 
have the same extension, i.e., which test the same quantum proposition. 

The restriction of this extensional mapping to the set of all exact 
effects ~ ( ~ )  

Eeg(J f )  --, ext(E) = (M1(E), M1(E) • 

is one-to-one and onto the quantum logic Le(X(~, ), _1_). 
In conclusion, we may make the following statement. 

Any quantum proposition of the quantum BZ-logic Lf(X(;,~), A_), in 
general, is experimentally tested by several different effects from Z ( ~ ) ,  
whereas any proposition of the corresponding exact quantum logic 
Le(X(d,~ff), _1_) - d / / ( ~ )  is experimentally tested by a unique exact effect 
from ~ ( ~ ) .  
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Moreover, diagram (6.8) can now be restated as follows 

effect proposition g-property 
ext 

FeJ-~(g f  ~) "~ ( M , ( F ) ,  Mo(F) ) '  ' [FlvReprg(~r 

Ee#(J r  ~) ' ' ( M ,  M • ) - M ' , [Eljpepr(J/z) 
event exact prop. property 

where M is the subspace of  ~ on which E projects. 

(7.4) 

8. HILBERTIAN Q U A N T U M  LOCALIZATION EFFECTS 

In this section we consider the conventional quantum description of  a 
particle in a one-dimensional space based on the Hilbert space L2(R) 
(Cattaneo and Nisticb, 1991). Any Borel measurable function co: R ~ [0, 1] 
represent a (macroscopic) classical localization effect, for which we introduce 
the Borel subsets 

Al(co) := o~-J({ 1 }) and Ao(o~) := co-l({0} ) 

[We also set At(co ) := co-l(0, 1] = R\A0(co) in the sequel.] 
In particular, characteristic functions ZA of Borel subsets A of ~ are 

classical exact localization effects. 
For any classical localization effect co, the linear operator 

F(co): L2(R) ~ L2(R) 

is defined, for anyfeL2(R) ,  as follows: 

(F( co)f ) (x) := co ( x ) f ( x )  

which is trivially a Hilbertian quantum effect, called a quan tum localizat ion 
ef fect ,  whose certainly-yes and certainly-no domains are, respectively, 

M , ( F ( o g ) )  = {geL2(R)  : supp(~)  ~A,(c0)} (8.1) 

Mo(F(co) )  = {{ocL2(~) : supp(q~) ~_Ao(cO)} (8.2) 

To any classical exact localization effect Za there corresponds the Hilbertian 
exact localization effect (orthogonal projection) E(A) :=F(za  ) defined as 

(E(A)f)(x)  := Z a ( x ) f ( x )  

For any quantum localization effect F(co) we have the following. 
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(doc-Loc) The fuzzy orthocomplement F(og)'eE(L2(R)) is the quantum 
effect 

(F(co)y)(x) := [1 - co(x)]f(x) 

(woc-Loc) The intuitionistic orthocomplement F(co)~eE(L2(R)) is the 
quantum effect 

(F( o~ )~f )(x) := (ZAo(o,))(x)f (x) 

The necessity and possibility of the quantum localization effect F(co) are the 
quantum exact localization effects, respectively, 

(v(F(co))f)(x) =Za,(~,)(x)f(x), (la(F(co))f)(x) =Za,(o~)(x)f(x) 

Two Hilbertian localization questions F(col) and F(co2) are equivalent 
with respect to necessity iffAl(co 1) = Al(coz). Then any Hilbertian localization 
property is characterized by a Borel subset A1 and is the quantum property 

11(AI) = "the particle is (necessarily) localized in A1" 

Hence, 

t,(A,) = {F(co): A,(co) = A, } = [E(A,)]~ (8.3) 

The quantum property 11(A1) is sharply tested by the Hilbertian exact effect 
described by the orthogonal projection E(A)); any Hilbertian localization 
effect F(co), for which Al(co)=Ai, measures in an unsharp way the same 
property. 

The orthogonal projection E(AI) projects onto the subspace of all 
f~Lu(R) whose support is in A,, and so nonzero vectors of this subspace 
represent preparation procedures in which this quantum property is actual 
(i.e., true with certainty); each single individual sample prepared according 
to any of these preparation procedures gives with certainty the answer "yes" 
to quantum property 11(A1), and the latter is an "element of reality" in this 
preparation. 

The orthogonal projection E(AI)' projects onto the subspace of all 
gEL2(R) whose support is in (AI) c= I~\Ai. Hence, if 11 (AI) -  [E(AI)]jp is the 
quantum property "the particle is localized in Aj ," then 

7l, (A,) ---- [E(A, )']jv = [E((Al)C)l,v = l, ((A,)c) (8.4) 

That is, the quantum property "the particle is not localized in A1" is just the 
quantum property "the particle is localized in (Air." Each nonzero vector 
from L2(R) whose support is contained in (AI) c represents a preparation 
procedure of single individual samples for which the quantum property 
711(A) is true with certainty (i.e., it is an "element of reality"). 
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Remark 1. Note that if F(co) is a quantum localization effect which 
unsharply tests the property of being localized in A~ [i.e., Al(co)=Ad, then 
F(co)' is not an effect which unsharply tests the property of being localized 
in (Ai) c [i.e., A0(a0 r The quantum exact localization effect E(AI) is 
the unique quantum effect with this property. 

Two Hilbertian localization questions G(co~) and G(co2) a r e  equivalent 
with respect to impossibility iff A0(col) = Ao(co2). Then any Hilbertian localiz- 
ation noperty is characterized by a Borel subset Ao and is the quantum 
noperty 

/o(Ao) = "it is impossible to localize the particle in A0" 

Hence, 

to(Ao)- {G(co): Ao(CO) = Ao} = [E(Ao)]~ (8.5) 

The quantum noperty 10(Ao) is sharply tested by the Hilbertian exact effect 
described by the orthogonal projection E(A0); any Hilbertian localization 
effect G(co), for which Ao(co)= A0, measures in an unsharp way the same 
noperty. 

Two Hilbertian localization questions F(ol) and F(co2) are congruent 
by modality iff A1(r = Al(CO2) and Ao((-01) ----- Ao(cO2). Then any Hilbertian 
localization generalized property is characterized by a pair of Borel subsets 
(Aj, Ao) (with AI c~ Ao = ~ )  and is the quantum g-property 

lg(Ai, Ao)= "the particle is necessarily localized in A~ and it is impossible to 
localize the particle in A0" 

and, according to (6.11), this localization g-property is identified with the 
pair 

t~(A,, Ao) = (I,(A,),/o(A0)) (8.6) 

Hence, we can affirm the following in the case AoC:(Al)C: 

All quantum localized effects F(coi)e[F(co)]vR describe effects which, 
relative to a localization observation, unsharply test if the particle is 
localized in an (unknown) Borel region A of the real line such that 

Ai c_A ~_hp= R\A0 

According to Proposition 5.1, the quantum localization exact property 
le(Aj, At) --11 (A1) is sharply tested by the unique quantum localization exact 
effect E(A0. 
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The  extensional  m a p p i n g  applies to q u a n t u m  localization effects, giving 
a cor responding  q u a n t u m  localization propos i t ion  in the following way:  

F(co) ~ ext(F(co)) 

= ({ v e L 2 ( R )  : s u p p ( v )  ___ A~(co)}, {~o~L2(R) : supp(tp) __ Ao(cO)} ) 

Nonze ro  vectors  f r o m  

{ Ip'EL2(~) : s u p p ( v )  --Al(o~)} 

[resp., {cpeL2(~):  supp(q~)___Ao(oJ)} ] describe p repa ra t ion  procedures  in 
which the e lementary  s ta tement  " the  particle is localized in A, when the lat ter  
is tested by  the classical localization device co" is " t rue"  (resp., "fa lse") .  
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